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SUMMARY 

In calculations of transonic flows it is necessary to limit the domain of computation to a size that is 
manageable by computers. At the boundary of the computational domain, boundary conditions are 
required to ensure a unique solution. Since wave solutions exist in the unsteady transonic flow field, 
incorrect boundary conditions may result in spurious reflections from the computational boundary. This 
may introduce errors into the solution. To prevent the spurious reflections, absorbing boundary conditions 
are often used on the computational boundary. In this paper we describe a method to derive absorbing 
boundary conditions for transonic calculations. We demonstrate both theoretically and numerically that 
the use of the absorbing boundary conditions will reduce the spurious reflections in the calculation. 
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1. INTRODUCTION 

In the calculation of transonic flows the governing equation needs to be solved over the entire 
flow field. Since the flow field is unbounded, techniques are needed to limit computations to a 
size that is manageable by computers. One technique is to use co-ordinate transformations, in 
which the infinite flow field is mapped into a finite computational domain. While this approach 
is effective for steady problems, it is unsatisfactory for unsteady calculations. An alternative is 
to truncate the flow field to a finite computational domain by introducing a computational 
boundary. On the boundary, boundary conditions are needed to ensure a unique solution. Since 
wave solutions exist in unsteady problems, the interaction of waves with the computational 
boundary cannot be avoided for long-time calculations. If boundary conditions are incorrect, 
incident waves may give rise to spurious reflections at the computational boundary. These 
spurious reflections will introduce a large error in the solution within the computational domain. 
Therefore boundary conditions that absorb incident waves are needed to prevent the spurious 
reflections in the solution. Such conditions are said to be absorbing boundary conditions or 
radiation boundary conditions. 
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There is a substantial literature on absorbing boundary conditions and one of the landmark 
papers is by Engquist and Majda.’ In Reference 1 absorbing boundary conditions were obtained 
for the wave equations by considering a pseudodifferential equation. Gustafsson2 obtained 
far-field boundary conditions for Euler’s equations. Higdon3 found a general representation of 
the Engquist-Majda boundary conditions. Absorbing boundary conditions for general second- 
order hyperbolic equations were considered in Reference 4. More recently, absorbing boundary 
conditions for dispersive waves were analysed in Reference 5. Most work on absorbing boundary 
conditions has been concentrated on waves in a homogeneous medium. 

The purpose of this paper is to derive absorbing boundary conditions suitable for unsteady 
transonic calculations and to demonstrate that the use of absorbing boundary conditions will 
improve the accuracy and efficiency of the solution. Absorbing boundary conditions for transonic 
flows will be obtained by using the method introduced in Reference 4, where absorbing boundary 
conditions were obtained for waves propagating in a homogeneous medium. In this paper we 
will extend the results of Reference 4 to non-homogeneous media. 

We assume that the governing equation is the transonic small-disturbance equation given by 

where fi are given in terms of the perturbation potential 4 by 

fo = - 4 4  - B 4 X 3  fi = E4x + F4,Z + G4,2 f 2  = 4, + H4X4V f 3  = 4 z .  (2) 

The coefficients A ,  B, E, Fand G are chosen as ‘NASA Ames coefficients” which are defined as 

A = M i  K’, B = ~M;K, E =  1 - M’,, 

F =  -q 2 Y + 1)MZ,? G = &y - 3)M2,, H = - ( y  - l )MZ, ,  

where K, M,, y are the reduced frequency, the freestream Mach number and the specific heat 
ratio respectively. The transonic small-disturbance equation (1) has been widely used for the 
calculation of transonic 

The approach used in this paper to derive absorbing boundary conditions for (1) is briefly 
described as follows. We assume that a computational boundary is place sufficiently far away 
from the source of disturbances, e.g. the body of an aircraft wing or a shock wave over a 
wing surface. In the region near the computational boundary it can be assumed that the unsteady 
flow can be represented as a sum of a steady flow and an unsteady perturbation. Furthermore, 
the unsteady component is substantially smaller than the steady component in magnitude. Under 
this assumption the transonic small-disturbance equation (1) can be cast into two equations, 
one for the steady flow and one for the unsteady perturbation. Once the steady flow potential 
is obtained from the first equation, the equation for the unsteady perturbation potential becomes 
linear. This linear equation describes the propagation of unsteady waves in a medium given by 
the steady state flow field. The propagation velocity of the unsteady waves can then be 
determined by the geometrical acoustic approximation. Finally, absorbing boundary conditions 
are obtained by requiring that waves can only propagate from interior to exterior on the 
boundary. It is worth noting that the present method is different from using the steady state 
potential as the boundary data. In the present method the solution is still free to oscillate at 
the boundary, but the medium is assumed to be generated by the steady state flows. 

The organization of this paper is as follows. In Section 2 equation (1) is linearized around the 
steady flow and the geometrical acoustic approximation is used to determine the velocity of 
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wave propagations. In Section 3 we obtain absorbing boundary conditions for unsteady 
transonic flows and analyse reflection coefficients. Finally, numerical results are presented in 
Section 4. 

2. THE GEOMETRICAL ACOUSTIC APPROXIMATION 

Under certain conditions it can be assumed that the unsteady flow potential can be represented as 

(3) 
where qF is the steady state potential and &' is the unsteady perturbation potential. This 
assumption applies to the flow around oscillating wings provided that the vibration amplitude 
is sufficiently small. Tijdeman' has found experimentally that this assumption is justified for 
infinitesimal-amplitude disturbances. 

When equation (3) is substituted into (1) and the terms containing E' and higher powers are 
neglected, the first approximation leads to equations for 4' and 4" given by 

4(x, y,  z, t )  = 4"x, Y ,  4 + &4"(X ,  Y ,  z, 0, E << 1, 

af; a!' 8% - + + + - = o ,  ax ay aZ (4) 

where f are defined by (2) with 4 replaced by 4' and 

A"$: + = C"4:, + D"& + E"4YY + F"4Y + GU4:y + 4:z = 0, ( 5 )  

where 

A" = M i d ,  B" = 2Miu,  C" = (1 - M i )  - (7 + l)M&@,, 

D" = -b + 1 ) M i 4 L  - (Y - wed;,, (6) 

E" = 1 - (y  - l ) M i & ,  F" = -2M,$@,,, G" = -2M&4;. 

Equation (4) is non-linear but time-independent. It can be solved first to determine the coefficients 
of equation (5).  Equation (5) is a linear equation with non-homogeneous coefficients; it describes 
the propagation of unsteady disturbances in the steady state flow field determined by 4'. In the 
following, since we will only be concerned with the unsteady equation (9, the superscript 'u' 
will be omitted in the coefficients of equations ( 5 )  and (6). 

Further approximation can be made by representing the unsteady potential by a local plan 
wave''*'' 

4"(x, y ,  z, t )  = a(x, y, z, t)eiB(X*~*Z"). (7) 

The approximation (7) is valid provided that the flow properties vary with position only 
gradually on a scale of wavelengths. This allows the waves locally to be approximately sinusoidal, 
with local wave numbers and frequency given by* 

5 = ox, 17 = OY, r = &, w = 8,. (8) 
If (7) is substituted into (5) and the terms involving a,, t,, . . . and their higher-order derivatives 
are neglected, a dispersion relation is obtained as 

(9) Aw' + B u r  = Cy2 - iD< + EqZ - iFr] + Gtr] + 1'. 

* The wave numbers are commonly defined by ( = -Ox, etc., but for convenience later in defining absorbing boundary 
conditions, we have omitted the negative sign. 
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The geometrical acoustics approximation consists of the assumption that the frequency and 
wave numbers of the unsteady perturbations are very large.lO*" Thus the terms linear in 5 and 
q can be neglected in (9). Then the dispersion relation under the geometrical acoustics 
approximation becomes 

P(w, 5, q, [; X, y, Z) = Aw' + Bw< - Ct2 - Eq2 - G<q - c2 = 0, (10) 

where A ,  B, C,  E and G are given by (6) with superscript 'u' omitted. 
The dispersion relation (10) can be solved by the method of characteristics and the solution 

can be obtained by integrating along its characteristic curves. The characteristics of (10) are 
defined as curves in the (x, y, z)-space with direction given by 

dz 
- = w, dx dY - = v ,  

dt dt 
-. - - dt 

where 

w = - =  pc 21: (12) P Bw-2CC-Gq v = _ 2 = -  P 2Eq+G5 
P ,  2Aw + B5 ' P, 2Aw + B t '  P ,  2Aw + BC' 

# = A =  

The vector u = (u, v ,  w) defines the group velocity; it is the velocity of energy propagation. Along 
each path (11)  of energy propagation the rates of change of wave numbers and frequency are 
given by 

(13) 
d o  
- = 0. 
dt 

5 -  pz 
dt pa' dt P"' dt p ,  ' 

drl p ,  d5 p ,  - -- _ -  - -- ~ - _ _  - 

In other words, (13) specifies the refraction of wave energy. 

3. ABSORBING BOUNDARY CONDITIONS 

In this section we will derive absorbing boundary conditions. We assume that the computational 
domain is either a ball or a cube in the (x, y, z)-space. Let the computational boundary be defined 
by a closed surface r which encloses the region of disturbances, such as a wing body or a shock 
wave. Thus all disturbances are generated in the region interior to r. We also assume that in 
the region exterior to r the gradient of steady state potential, VqY, varies with position (x, y ,  z) 
only gradually on the scale of wavelength. Since the coefficients A, B, C, E and G in 
P(w, 5, q, [; x, y ,  z) depend only on V@, in the region exterior to r the magnitudes of P,, P, 
and P ,  are small compared with that of P,.  It follows from (13) that in the exterior region of 
r the refraction of wave numbers is small, so that a wave only slightly changes its direction of 
propagation in the exterior region. 

We further assume that if a disturbance from the interior, e.g. a disturbance generated by an 
oscillating wing body or a shock wave, comes to the boundary r, it travels in a direction pointing 
to the exterior of r. Denote by n = n(x, y ,  z) the outward normal of r at (x, y, z). Then the group 
velocity u = (u, v ,  w) of the disturbance has a positive component in the direction of n. This 
implies that any disturbance from the interior satisfies 

u.n>O o n r  (14) 

when it first arrives at the boundary r. 
The condition (14) is therefore a boundary condition which is satisfied by all incident waves 
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from the interior of r. If this condition is imposed on the boundary, all incident waves will be 
absorbed and no reflections will be generated. For this reason the condition (14) is referred to 
as a perfectly absorbing boundary condition. It is clear that the condition (14) is equivalent to 

u - n  - lu.nl = 0 on I-. (15) 

This expression can be regarded as the dispersion relation of a boundary operator in the physical 
(x, y ,  z)-space. Unfortunately, this operator is a pseudodifferential operator which is non-local 
in both space and time. For computational efficiency a boundary condition involving a 
differential operator is preferred. Such a condition can be found by using some approximation 
of (19, after which the boundary condition will no longer be perfectly absorbing but will become 
partially absorbing. 

For an approximation of (15) we consider waves whose energy propagates at a fixed speed 
p > 0 in the normal direction n. These waves satisfy the relation 

If we write n = (nx ,  ny, nz), then it follows from the definition of the group velocity u in (12) that 
(16) can be written as 

or, by the definition of P in (lo), 

i B ( q  (, q, [) = n,(Bo - 2C< - Gq) - ny(2Eq + Gt) - n,(2c) - p ( 2 A o  + 84) = 0. (18) 

It is clear that (18) is the dispersion relation of a boundary condition of the form 

n,(B& - 2C4: - G @  - nY(2E4j: + G#:) - n,(2&) - ~(2-44: + B&) = 0 on r. (19) 

The boundary condition (19) is a local condition and is easy to implement. However, it is not 
perfectly absorbing. For a given value of p > 0 the condition (19) is perfectly absorbing only 
for those disturbances whose propagation speed in the normal direction n is p; no reflection 
will be generated for such disturbances. For waves of other speeds reflections may still exist, 
but we will show that the reflections will be small compared with the incident waves. 

To see how much reflection may be generated when the boundary condition (19) is used, we 
consider reflection coefficients. Let 

where the first term represents an incident wave and the second term represents the reflected 
wave; r is defined as the reflection coefficient and is the amplitude of the reflected wave if the 
incident wave has unit amplitude. A small value of r implies that the amplitude of the reflected 
wave is small. 

Substituting (20)  into (19) and solving for r, we find that the reflection coefficient is given by 

where Ai7 is as defined in (17) and ( t i ,  qi,  ri) and (tr, qr, C,) are wave vectors of the incident and 
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reflected waves respectively. If we write V(5,,,,I)P = ( P < ,  P,,, Po, 
becomes 

then the reflection coefficient 

(21) 

where (.)i and (.), denote evaluations at (ti, qi ,  Ci)  and (t,, q,, i,) respectively. 
Given a wave vector of an incident wave (ti, qi,  Ci), the wave vector (t,, q,, [,) of the reflected 

wave can be determined as follows. First, since both the incident and reflected waves have the 
same phase on the boundary, we have Oi = 8,. This implies that 

(ti. qi, CJ.7 = ( t r y  qr, i r ) * t ,  

where z is any unit tangential vector of the boundary surface r. Next, both (ti, q i ,  ci) and 
(t,, q,, c,) satisfy the dispersion relation (lo), so that in the (5 ,  q, [)-space both (ti,  q i ,  ci) and 
(t,, q,, c,) lie on the ellipsoid defined by (10). Now, to find (i,, q,, [,), we draw in the (4, q, c)-space 
a straight line at the point ( t i ,  q i ,  Ci) in the direction of n. The line intersects the ellipsoid defined 
by (10) at two points. One is (ti, qi,  Ti) and the other is (t,, q,, [,). By this construction we can 
easily verify that 

(V(5, q ,  . n = - F(<, q ,  <) P)i * n. (22) 

From (21) the reflection coefficient can now be written as 

and, owing to (22), we have 

1 / ~  - (pw)i/C(V(<, q,c)P)i * n l  
I//J - (pw);/[(V(<, q,<)P)r nl  

Irl = 

The expression in (23) can be simplified if we observe that 

and 

Now the reflection coefficient can be written as 

= ( y o n ) - '  

= (u,*n)-'. 

The relation (24) shows that the reflection coefficient is zero if the incident wave satisfies 
u i - n  = p, i.e. the condition (19) is perfectly absorbing for such waves. In general the reflection 
coefficients is non-zero. However, by choosing a proper p, the reflection coefficient can be shown 
to be less than unity for all incident waves that do not travel too slowly. Indeed, for any E > 0 
we can always find a p > 0 such that Irl < 1 for all waves satisfying u i . n  2 E. This shows 
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that the boundary condition (19) is absorbing for all waves except the slowly travelling waves, 
i.e. those waves with ui n E [0, E ). 

We note that the reflection coefficient for the perfectly absorbing boundary condition (15) is 
zero for all incident waves. It can also be shown that the reflection coefficient of the boundary 
condition 4" = 0 is always unity. For this reason the condition 4" = 0 is often said to be a 
totally reflecting boundary condition. 

The absorptivity of (19) can be improved by adjusting the parameter p. For example, if one 
has a priori knowledge of the velocity of disturbances arriving at the boundary, the parameter 
11 may be tuned to this velocity. If no information is known about the solution, p can be selected 
to annihilate the fastest-propagating waves, i.e. set p = maxl ui * nl. The maximum group velocity 
max )ui-nl can be obtained analytically from (12) without apriori knowledge of the solution. It 
has been observed in numerical experiments that the solution is not sensitive to p. This fact is 
also reported in Reference 5. Furthermore, the parameter p may also vary with (x, y, z )  on the 
computational boundary r provided that it is slowly varying in the scale of wavelengths of 
disturbance waves. 

Another method to reduce reflections is to use an operator consisting of many factors of (18). 
The dispersion relation of a condition consisting of two factors, for example, is given by 

BB(a 5 7  rl, 0 = (V,,,,,,,P.n - ~ l ~ m ) ( v ( ~ , , , $ * n  - P 2 P O )  = 0, P1r 112 ' 0. (25) 

The parameters p1 and p 2  can be tuned to waves with specific velocities. The reflection coefficient 
for (25) can be found to be 

Since each factor in (26) is smaller than unity, the amplitude of the reflection when (25) is used 
is smaller than that when (18) is used. For more details on higher-order boundary conditions 
we refer to References 3-5. 

4. NUMERICAL RESULTS 

The above absorbing boundary conditions have been implemented in a three-dimensional 
transonic simulation code UST3D.8 

In UST3D the computational domain is a region as shown in Figure 1. The computational 
boundaries are planes normal to the co-ordinate axes. Thus the upstream boundary is 

Figure 1. The computational region 
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given by x = - 1. On this boundary the dispersion relation (18) of an absorbing boundary 
condition is 

+ B5 + YV + 0, (27) 

where 

with p > 0. From (27) the boundary condition can be derived as 

on x = -1. ~4 , "  + B4; + y&! = 0 (28) 

The condition (28) gives an exact condition for a plane wave solution if its upstream propagation 
speed is p. If the condition (28) is used at the upstream boundary, then plane waves which travel 
at an upstream p will be annihilated exactly, so that no reflection will be generated. However, 
disturbances in general consist of waves of different propagating speeds. Although the boundary 
condition (28) does not absorb all waves totally, it helps to reduce reflections generated by waves 
of other propagating speeds; see (24). In the computations the parameter p was tuned to the 
fastest group velocity as obtained from (12). It is worth noting that we have tested different 
values of p and the solutions are not sensitive to it. The results presented in this paper are typical 
of the cases we have tested. The downstream boundary condition has the same form as (28) 
with p replaced by -p. Absorbing boundary conditions for other boundaries can be similarly 
derived. For example, on the boundaries above or below the wing in the z-direction (z = h or 
z = - h) the absorbing boundary conditions are given by 

where 0 c p < 1 on z = h and - 1  < p < 0 on z = -h. 
In our computations UST3D was used to compute the transonic flows about an isolated wing 

oscillating in pitching mode. The wing is divided into many spanwise sections and the pressure 
distribution at each section is computed. The pressure is represented by the real (RE) and 
imaginary (Im) parts which are defined by 

C, = Re sin ( ~ t )  - Im cos (rct). 

To evaluate the performance of the absorbing boundary conditions, we may compare the 
results computed using the absorbing boundary conditions with the exact solution. However, 
the exact solution is generally unknown. One approach is to use some experimental result as 
the exact solution. We choose not to use this approach, because any disagreement between the 
computed results and the experimental result may also be due to limitations of the transonic 
small-disturbance model. In order to find the error purely due to the use of boundary conditions, 
we will use the solution on a very large computational domain as the exact solution. 

We compare the pressure distributions computed by using different domain sizes and 
boundary conditions. The boundary conditions compared are the absorbing conditions of this 
paper and the boundary condition 4" = 0.6 The latter boundary condition is totally reflecting, 
so that outgoing waves will be totally reflected upon hitting the boundaries. The reflections will 
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Figure 2. Results for the ONERA M6 wing: -, (29), larger domain; - - - -, (29) smaller domain; - - -, 4" = 0, 

larger domain; - - -, q5" = 0, smaller domain 

come back to the domain of computation to contaminate the solution. To prevent the reflection 
from contaminating the solution, boundaries must be placed for away from the wing, so that 
during the time period of computation the reflection has not travelled far enough to contaminate 
the solution at the wing surface where the pressure distributions are calculated. If boundaries 
are too close, then the boundary condition 4" = 0 will give rise to a large error in the solution. 
On the other hand, the absorbing boundary conditions permit boundaries to be place close to 
the wing surface. In the following we will compare the effect of boundary conditions in the 
z-direction only. 
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Figure 3. Results for the F5 wing: same curves as Figure 2 

Four results are presented for each wing configuration. They are obtained by using two types 
of boundary conditions on the boundaries of two domains. The boundary of the larger domain 
is placed at about 7 chord lengths above the wing, while the boundary of the smaller domain 
is about 0.6 chord lengths above the wing. Since the boundary of the larger domain is far away, 
the solution obtained using either boundary condition may be considered as an accurate solution. 
However, the solutions on the smaller domain may be subject to contamination from reflections. 
Therefore the difference between the solutions on the two domains is a measure of how good a 
boundary condition is. 

The computed pressure distributions at different spanwise locations for ONERA M6 and F5 
wings are presented in Figures 2 and 3 respectively. In both cases the Mach number is M ,  = 0.9, 
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the reduced frequency is K = 0.55 and the angle of pitching oscillation is a = 1”. In each graph 
the three curves which are close together represent the results for both types of boundary 
conditions on the larger domain and for the absorbing boundary condition on the smaller 
domain. The results computed using the boundary condition 4” = 0 on the smaller domain are 
represented by the fourth curve, which has a completely different behaviour compared with the 
other three. These results show that the use of absorbing boundary conditions can significantly 
improve the accuracy of solutions when a small computational domain is used. 

5. CONCLUSIONS 

We have derived absorbing boundary conditions for computing transonic flows. The conditions 
are obtained by requiring that at the computational boundary, disturbance waves travel in the 
outward direction only. The conditions obtained are perfectly absorbing for waves travelling at 
a certain speed. The analysis of the reflection coefficient shows that although reflection may 
exist in general, the amplitude of the reflection is small compared with that of the incident waves. 
Numerical results are presented to demonstrate that the use of absorbing boundary conditions 
can improve the accuracy of solutions. 
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